题目链接:
题目虽然有一个n的限制,但求二维区间最值首先想到的还是RMQ,但是如果按照往常RMQ的写法,空间复杂度是O(n2*(log2(n)2)),而且需要两个求最大最小,所以会爆空间,大概也会T,233。
所以这个时候发现n还是蛮重要的,dp[i][j]表示以点(i,j)为左上角,(i+(1<<(log2(n)-1)),j+(1<<(log2(n)-1)))为右下角的矩形区域内的最值。
如果不好理解可以在开一维k,即dp[i][j][k]表示以点(i,j)为左上角,(i+(1<<(k-1)),j+(1<<(k-1)))为右下角的矩形区域最值。
这样预处理之后枚举左上角,可以做到O(1)查询区间最值。
1 #include2 using namespace std; 3 typedef long long ll; 4 const int maxn = 1010; 5 const int inf = 2e9; 6 int dpM[maxn][maxn]; 7 int dpm[maxn][maxn]; 8 int logk; 9 int query(int x, int y, int k) {10 int w = k - (1 << logk);11 int Max = max(max(dpM[x][y], dpM[x + w][y + w]), max(dpM[x + w][y], dpM[x][y + w]));12 int Min = min(min(dpm[x][y], dpm[x + w][y + w]), min(dpm[x + w][y], dpm[x][y + w]));13 return Max - Min;14 }15 int main() {16 int n, m, k, x;17 scanf("%d%d%d", &n, &m, &k);18 for (int i = 1; i <= n; ++i)19 for (int j = 1; j <= m; ++j) {20 scanf("%d", &x);21 dpM[i][j] = dpm[i][j] = x;22 }23 logk = log2(k);24 for (int t = 0; t < logk; t++) {25 for (int i = 1; i + (1 << t) <= n; i++) {26 for (int j = 1; j + (1 << t) <= m; j++) {27 dpM[i][j] = max(max(dpM[i][j], dpM[i + (1 << t)][j + (1 << t)]), max(dpM[i + (1 << t)][j], dpM[i][j + (1 << t)]));28 dpm[i][j] = min(min(dpm[i][j], dpm[i + (1 << t)][j + (1 << t)]), min(dpm[i + (1 << t)][j], dpm[i][j + (1 << t)]));29 }30 }31 }32 int ans = inf;33 for (int i = 1; i <= n - k+1; i++) {34 for (int j = 1; j <= m - k+1; j++) {35 ans = min(ans, query(i, j, k));36 //cout << query(i, j, k) << " ";37 }38 }39 printf("%d\n", ans);40 }